Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.TheVera RubinObservatory will provide an unprecedented set of time-dependent observations of the sky. The planned Legacy Survey of Space and Time (LSST), operating for ten years, will provide dense light curves for thousands of active galactic nuclei (AGN) in deep drilling fields (DDFs) and less dense light curves for millions of AGN from the main survey (MS). Aims.We model the prospects for measuring the time delays for the AGN emission lines with respect to the continuum, using these data. Methods.We modeled the artificial light curves using the Timmer-König algorithm. We used the exemplary cadence to sample them (one for the MS and one for the DDF), we supplement light curves with the expected contamination by the strong emission lines (Hβ, Mg II, and CIV, as well as with Fe II pseudo-continuum and the starlight). We chose suitable photometric bands that are appropriate for the redshift and compared the assumed line time-delay with the recovered time delay for 100 statistical realizations of the light curves. Results.We show that time delays for emission lines can be well measured from the main survey for the bright tail of the quasar distribution (about 15% of all sources) with an accuracy within 1σerror. For the DDF, the results for fainter quasars are also reliable when the entire ten years of data are used. There are also some prospects to measure the time delays for the faintest quasars at the lowest redshifts from the first two years of data, and possibly even from the first season. The entire quasar population will allow us to obtain results of apparently high accuracy, but in our simulations, we see a systematic offset between the assumed and recovered time delay that depends on the redshift and source luminosity. This offset will not disappear even in the case of large statistics. This problem might affect the slope of the radius-luminosity relation and cosmological applications of quasars if no simulations are performed that correct for these effects.more » « less
-
Abstract We observed the Seyfert 1 galaxy Mrk 817 during an intensive multiwavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in the Hubble Space Telescope/Cosmic Origins Spectrograph spectra, both during the campaign and in other epochs extending over 14 yr. We conclude that, while the narrow absorption outflow system (at −3750 km s−1with FWHM = 177 km s−1) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (logNH= 19.5 cm−2) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the hydrogen-ionizing continuum flux) is logUH= −1.0 . The outflow is located at a distance smaller than 38 pc from the central source, which implies a hydrogen density ofnH> 3000 cm−3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1016cm), with potential cloud geometries ranging from spherical to elongated along the line of sight.more » « less
-
Abstract An intensive reverberation mapping campaign of the Seyfert 1 galaxy Mrk 817 using the Cosmic Origins Spectrograph on the Hubble Space Telescope revealed significant variations in the response of broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over an ∼60 day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 month observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the Civlight curve, which is the line least affected by intrinsic absorption in Mrk 817 and least blended with neighboring emission lines. We identify five temporal windows with a distinct emission-line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the broad UV lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response.more » « less
An official website of the United States government
